Showing metabocard for PC(18:0/14:1(9Z)) (MMDBc0033808)
Record Information
Version
1.0
Status
Detected and Quantified
Creation Date
2021-11-19 05:04:07 UTC
Update Date
2022-12-15 22:51:59 UTC
MiMeDB ID
MMDBc0033808
Metabolite Identification
Common Name
PC(18:0/14:1(9Z))
Description
PC(18:0/14:1(9Z)) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/14:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.↵↵While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC.
Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, Karu N, Djoumbou Feunang Y, Arndt D, Wishart DS: YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res. 2017 Jan 4;45(D1):D440-D445. doi: 10.1093/nar/gkw1058. Epub 2016 Nov 28. [PubMed:27899612 ]